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Testing for nonlinearity in time series without the Fourier transform
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A method to test for nonlinearity in time series, without the need to apply the Fourier transform, is proposed.

This method therefore avoids the drawbacks of previously proposed surrogate techniques associated with the
estimation of the signal’s power spectrum. The test addressed by this algorithm is that the data are generated
by a stationary linear system. To achieve this, the algorithm takes advantage of the fundamentally different

structure of linear and nonlinear systems.
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The method of surrogate data has been proposed by
Theiler et al. [1] to investigate nonlinear determinism in a
time series. The most successful algorithms are as follows:
(i) the Fourier transform (FT) algorithm and (ii) the ampli-
tude adjusted Fourier transform (AAFT) algorithm. In an at-
tempt to address some of the problems of these techniques,
an improved surrogate method, iterative AAFT (IAAFT), has
also been proposed by Schreiber et al. [2]. All of these tech-
niques are linear surrogate methods because they are based
on a linear process and address a linear null hypothesis.

It should be noted that a time series exhibiting strong
periodicities is clearly not consistent with the hypothesis of
linear noise [3]. Hence, in this Rapid Communication, our
focus is only on a time series exhibiting irregular fluctua-
tions: a time series which may be generated by either a sto-
chastic linear process or a deterministic nonlinear dynamical
system. The purpose of our method is to distinguish between
linear noise and deterministic dynamics. The test addressed
by our algorithm is that the data are generated by a stationary
linear system.

Recently, there has been considerable concern raised
about the efficacy of the standard linear surrogate techniques.
Schreiber demonstrated that the power spectra of AAFT sur-
rogates may not be identical to the original data [2,4], and
Theiler observed that wraparound effects of the Fourier
transform may lead to spurious high frequency content in the
surrogates [5]. Kugimitzis identified further problems with
these techniques and proposed palliative measures [6]. In this
Rapid Communication, we introduce a method to test for
nonlinearity without applying the Fourier transform unlike
linear surrogate methods, thereby avoiding many of these
problems entirely.

After describing our technique, we will present some nu-
merical examples of the application of this algorithm to
simulated time series data: a linear AR model and nonlinear
transformations of a linear AR model, which are both linear
systems; the Henon map and a chaotic neural network
(CNN), which are both nonlinear systems. In each case, the
data we will use are both noise free and contaminated by 20
dB Gaussian observational noise. Based on the results, we
apply the proposed method to two actual data, NMR laser
and cobalt data.

The basic premise of this technique is that the sum of
independent realizations of a linear system is a new realiza-
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tion of the same linear system. But, this superposition prin-
ciple is valid only for linear systems. The sum of indepen-
dent realizations of a nonlinear deterministic system will
exhibit a different dynamical behavior. In the following para-
graphs we present our choice of discriminating statistics and
then describe the proposed algorithm in more detail.

Dynamical measures are often used as discriminating sta-
tistics in hypothesis testing. We use the correlation dimen-
sion (CD) [2]. We note that when a system is linear stochas-
tic, although the true CD should be infinite, the estimated CD
can still provide useful information to understand some fea-
tures of dynamics. Hence, we employ it as our discriminating
statistics. To estimate the CD we apply the Gaussian kernel
(GK) algorithm [7]. The GK method is more robust against
noise and can give a unique value of dimension by extending
the hard kernel function (or the Heaviside function) in the
calculation of correlation integral to the general kernel func-
tions. More details concerning CD estimates and the relevant
problems are presented elsewhere [7,8].

To estimate the CD, it is necessary to first reconstruct the
underlying deterministic attractor. For this purpose, a time
delay embedding reconstruction is usually applied [9]. If our
observed data comprises a set of N scalar measurements
{s},, we can construct vectors x,=(s;,S,_¢,... +S1—(d-1)0)
e RY where ¢ is a time-lag and d is an embedding dimen-
sion, and we call these embedding parameters. Assuming
that the original attractor lies on a k-dimensional compact
manifold, Takens proved that the transformation is an em-
bedding if d>2k [9]. Tt is well known that the proper esti-
mation of invariant measures of the underlying system are
obtained only for a suitable range of the embedding param-
eters. Many authors have considered the details of the very
important problem of finding appropriate embedding param-
eters elsewhere; however, the issue is still unresolved [10].
To avoid possible confusion with problems arising from in-
appropriate estimation of embedding parameters, we use the
“correct” time-lag and a large enough embedding dimension
in all examples [11].

After the calculation of suitable test statistics, we need to
determine whether the hypothesis addressed by this method
shall be rejected or not. We employ Monte Carlo hypothesis
testing [12]. The basic idea is the following. Let a discrimi-
nating statistic for the original data be Q, and let the statistic
for test data sets be Q; (i=1,2,...,N,), where N, is the num-
ber of test data sets. We inspect whether the estimated statis-
tic of the original data falls within or outside the statistic
distribution of the test data. When the statistic falls within
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FIG. 1. The macroscopic mean activity of the CNN.

the distribution of the test data, we consider that the hypoth-
esis may not be rejected.

The primary contribution of this Rapid Communication is
an alternative method of producing data sets which do not
require estimation of the power spectrum of the given data.
To achieve our premise, we generate “test data” (see below)
by adding two intervals. The algorithm is superficially simi-
lar to a moving average filter. Let the original data be s(z)
and the test data be z(f). A data set §(¢) is first constructed by

SO =as®)+(1-a)st+1), (1)

where 0.4<a<<0.6 and 7 is called “shift.” If 7 is large
enough so that s(r) and s(z+7) are (linearly) uncorrelated,
then §(¢) will have the same linear characteristics as s(z). The
data set §(z) is therefore equivalent to a FT surrogate of s(z).
The data §(r) do not have the same empirical distribution as
the original data. To ensure that the test data have the same
distribution as the original (and avoid any statistical bias) we
must reorder it. Hence, to achieve the same distribution like
an AAFT or IAAFT surrogate, we reorder s(¢) to have the
same order as §(¢) and the reordered data are the test data
7(2).

We note here that the proposed method is not strictly a
surrogate test, although the purpose of the proposed method
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FIG. 2. (Color online) A plot of the correlation dimension (CD),
where the model is the NLT of a linear AR model, € is 1 and d is 5.
(a) relation between estimated CD and shift, and (b) CD of the
original data and the distribution of the test data. The horizontal line
in panel (a) and longer line in panel (b) correspond to the CD of the
original data, the X and the short lines when 7 is not greater than
the embedding window (that is, 1, 2, and 5), and the ¢ and medium
lines when 7 is larger than the embedding window (that is, 10, 15,
20, 25, 30, 35, 40, 45, 50, 100, 150, and 200).
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FIG. 3. (Color online) A plot of the CD, where the model is the
Henon map, ¢ is 1, and d is 5. The notation is the same as in Fig. 2.

is the same as that of linear surrogate methods. The essential
feature of the methodology of surrogate data is that gener-
ated surrogates preserve certain properties of the data and
destroy others and are consistent with a specified null hy-
pothesis. However, our proposed algorithm simply takes ad-
vantage of the fundamentally different structure of linear and
nonlinear systems to investigate nonlinearity in the time se-
ries. Hence, we refer to data generated by the proposed al-
gorithm not as “surrogate data” but as “test data.”

We may demonstrate the rationale for this algorithm as
follows. Suppose that the underlying system is linear, then
both s(7) and s(z+ 7) are realizations of that linear process. If
s(t) and s(¢t+7) are linearly uncorrelated (that is, 7 is large
enough), as(f)+(1—a)s(r+7) is also a realization of the un-
derlying linear process [13]. Hence, the CD for s(r) and
as(t)+(1—a)s(t+7) will be the same. Conversely, suppose
that the underlying system is deterministic (additional addi-
tive or dynamic noise is also admissible) and inherently non-
linear. For small values of 7, the substitution s(f)— as(f)
+(1=a)s(t+7) is nothing more than a change of coordinates:
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FIG. 4. (Color online) A plot of the CD, where the model is the
CNN, ¢ is 1, and d is 10. The horizontal line in (a) and the longer
line in (b) correspond to the CD of the original data, the X and the
short lines when 7is 1, 2, 5, and 10, and the ¢ and medium lines
when 7 is larger than 10.
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FIG. 5. (Color online) A plot of the CD, (a) NMR laser data and
(b) cobalt data, where € is 1 and d is 5. The longer line corresponds
to the CD of the original data, the short lines when 7<35, and the
medium lines when 7>5.

equivalent to smoothing out observational noise and identical
to the distinction between a time-lag and a differential em-
bedding. Hence, for small 7, we expect that the CD of the
test data is preserved [14]. As 7 increases, s(¢) and s(r+7)
become uncorrelated. In particular, for chaotic systems this
will happen fairly rapidly. When s(z) and s(¢+7) are uncor-
related, the dynamics of test data as(f)+(1—a)s(r+7) is
equivalent to observing a different, more complex, dynami-
cal system.

The critical point for this algorithm is therefore choosing
7 such that s(¢) and s(z+7) become linearly uncorrelated. In
the most precise sense, this may be difficult to achieve, even
if the autocorrelation function is almost zero. To avoid this
difficulty, we change the number of the shifts step by step,
for example, 1, 2, 5, 10, 20, and so on [15]. By doing this,
independent test data are generated at each shift. Also, mul-
tiple random test data sets for a fixed shift can be generated
by randomizing «. In either case, by gradually increasing the
shift, for a linear system we expect the test and original data
to converge. For nonlinear systems we expect them to be-
come clearly distinct.

In practice, when applying this idea, we must also be
careful that the shift should be larger than the maximum
time-lag in the embedding space (the embedding window). If
this is not the case, certain more complicated correlations
appear in the embedding space and the preceding argument
does not hold. For example, when the time-lag € is 1 and the
embedding dimension d is 5, the vectors constructed are
(t,t=1,...,t—4). When the shift 7is 10, there would be no
strong correlation between each component of successive
embedded vectors. However, when € is 1 and d is 15, the
constructed vectors are (¢,t—1,...,t—14). Hence, when 7 is
10 (that is, the shift is smaller than the embedding window),
some kind of correlation will appear between original and
shifted embedded vectors. That is, the use of the shift to form
the test data increases the embedding window and forms a
different embedding. However, when a system is linear, the
test data will have the same linear system when the embed-
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ding window is smaller than the shift used. On the other
hand, when a system is nonlinear, the test data will no longer
have the same nonlinear dynamics, even if the embedding
window is smaller than the shift used.

We now demonstrate the application of our algorithm, and
confirm our theoretical arguments with several models (two
linear and two nonlinear): a linear AR model, nonlinear
transformations (NLT) of a linear AR model data, the Henon
map; and CNN. In each case the number of data points is
2048; the data used are both noise free and contaminated by
20 dB Gaussian observational noise. We use a=0.5 [16] and
Tis 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 150, and
200. The linear AR model is given by x,=Ag+Ax,_;
+AeX,_6+ 1, Where A(=2.945206, A;=0.300739, and
A¢=0.202 056 [17], 7, is the Gaussian dynamical noise with
standard deviation 1.0. We use x, as the observational data.
For the NLT of a linear AR model, the same linear AR model
described above is used and a static monotonic nonlinear
function Ah(x) is used [18]. The function is

X—X,,,;,—0.0001 ]p
[m]

XW{IX

h(x) = | 4 [Zmr00001 o0 (2)
T | %u—xt0.001
where x,,;, and x,,,, are the minimum and maximum value

of x in the original time series, and p=3. The Henon
map [19], as a second order difference equation, is given by
x;=1.04+0.3x,_,— 1.4xt2_1. We use x; as the observational data.

Many measured physical quantities can be seen as an av-
erage derived from subsystems or microsystems. However,
in the scalar time series analysis it is assumed to be a single
probe of the system being investigated. Also, the averaging
operation is one of the filters by which the mean data would
become less chaotic. Hence, for investigating such a more
complex and practical case, we use a CNN [20], where we
use ten neurons to compose the network [21]. Let the ith
chaotic neuron be y;(r). Then, the ensemble mean value Y(z)
of ten neurons is defined as Y(t)=]l02ilflyi(t), which can be
regarded as a simple model of electroencephalography
(EEG) data. We use Y(¢) as the observational data. Figure 1
shows typical behavior of the time series. It should be noted
that we have confirmed that linear surrogate data methods
can discriminate the above systems correctly using the CD
but only provided that the embedding parameters are esti-
mated appropriately.

Figure 2 shows the results when the model is the NLT of
a linear AR model and the data is noise free, where the time
lag € is 1 and embedding dimension d is 5. Figure 2(a)
shows that as 7 increases, the CD values of the test data
converge and these are almost identical to that of the original
data. We apply Monte Carlo hypothesis testing [12] to the
larger shift (7>5) because these shifts are larger than the
embedding window and we expect that the two intervals are
linearly uncorrelated. Figure 2(b) shows that the CD of the
original data falls within the distribution of the test data.
According to the criterion mentioned previously, we cannot
reject our hypothesis. This result indicates that if there is no
correlation between s(7) and s(z+7) when using a 7, the test
data have almost the same structure even if a larger shift is
used. When the linear AR model is used, the data are con-
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taminated by 20 dB observational noise, and other embed-
ding dimensions are used; the results show essentially the
same behavior as Fig. 2.

Figure 3 shows the results when the model is the Henon
map and the data are noise free, where € is 1 and d is 5. This
result shows the opposite behavior as a previously presented
result. Figure 3(a) shows that the CD of the test data is al-
most the same as that of the original data when the shift 7is
1, 2, and 5, which is the same behavior reported in [14].
However, Figs. 3(a) and 3(b) show that these values are no
longer the same and the CD of the original data falls outside
the distribution when 7>5. When the data are contaminated
by 20 dB observational noise and other embedding dimen-
sions are used, essentially the same behavior occurs. In all
cases, from the results of these two examples, we find that if
the system is linear, the CD of the original data falls within
the distribution of the test data, and if the system is nonlin-
ear, the CD of the original data falls outside the distribution
of the test data.

Figure 4 shows the results when the model is the CNN
described previously, and the data are noise free, where € is
1 and d is 10. When 7> 10, Fig. 4(a) shows that the CD of
the original data is different from that of the test data and
Fig. 4(b) shows that it falls outside the distribution. Although
the Lyapunov dimension of this CNN is 1.043 032 [21], the
estimated CD of the original data is about 5.1. As is obvious,
it is difficult to estimate CD correctly in every situation. The
possible reason why the estimated CD is much different is
that the data used are the ensemble mean data of ten neurons.
That is, the averaging operation is one of the filters by which
information in the data would be lost. However, Figs. 4(a)
and 4(b) clearly show that the CD of the original data is
different from that of the test data when 7>>10. Hence, we
conclude that our method works well. When the data are
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contaminated by 20 dB observational noise and other embed-
ding dimensions are used, the behavior is essentially the
same as the results shown here.

The above results indicate the effect of different features
of the reconstructed attractor for linear and nonlinear dynam-
ics. From the results, we expect that if the system is linear,
when 7 is large enough and there is no correlation between
two intervals in Eq. (1), the distribution of the CD of test
data includes that of the original data. However, if the system
is not linear, even when 7 is large, the distribution does not
include that of the original data. In these examples, the pro-
posed algorithm works well for testing linear and nonlinear
systems and also distinguishing linear from chaotic systems.

Finally, we have applied the proposed method to a NMR
laser data, which is known to be nonlinear time series [2],
and time intervals of 7y-ray emissions of cobalt, which has
been recognized as random. The number of data points used
is 2048 in both the cases. Consistent with the presented re-
sults, Fig. 5 shows that the NMR system is nonlinear and the
cobalt system is linear.

By taking advantage of different structures for linear and
nonlinear systems, we described an algorithm to provide data
sets for testing nonlinearity without applying the Fourier
transform. Not only is this algorithm exceedingly simple, it
also avoids some of the numerical issues concerned with
estimating Fourier transforms from data. Our theoretical ar-
guments and computational examples show that this algo-
rithm succeeds in testing nonlinearity and discriminating
well between linear and chaotic systems: even in cases (such
as the CNN) where visual inspection of the data are incon-
clusive.
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